
TCTAP 2019

Delivering More Innovation of the Interventional Portfolio, Further Together Seoul, Korea, 29 April 2019

The Way to Be More Familiar with Onyx: Lessens from BIONYX & KAMIR

Yongcheol Kim

Chonnam National University Hospital, Gwangju, Korea

Thin composite wire strut, durable polymer-coated (Resolute W) Onyx) versus ultrathin cobalt-chromium strut, bioresorbable polymer-coated (Orsiro) drug-eluting stents in allcomers with coronary artery disease (BIONYX): an international, single-blind, randomised non-inferiority trial

	Resolute Onyx	Orsiro
Coating characteristics	Durable	Bioresorbable
Bare strut thickness, μm	81 / 91 (≤ 4.0 / ≥ 4.5 mm stents)	60 / 80 (≤ 3.0 / ≥ 3.5 mm stents)
Coating thickness, µm	5.6 (conformal)	7.4 / 3.5 (ab-/luminal)
Coated strut thickness*, µm	92	71
Stent platform	swaged shape core wire from platinum-iridium surrounded by cobalt-chromium alloy	cobalt-chromium alloy
Polymer	BioLinx®, a blend of hydrophobic C10, hydrophilic C19, and poly-vinyl pyrolidone	PLLA (poly [L-lactide] acid) (BIOlute®), on thin amorphous silicon carbide (proBIO®)
Drug	Zotarolimus	Sirolimus
Drug release time, months	6	3.3
Degradation time, months		< 24
Available stent diameters	2.0 – 5.0	2.25 – 4.0

BIONYX: Trial Design

All-comer patients (2015.10.07~2016.12.23)

- Inclusion criteria: Pat. ≥ 18 yrs.; PCI with DES required; informed consent; ability and willingness to comply with study procedures and follow-up
- Exclusion criteria: Participation in RCT of CV devices, DAPT, anti-thrombotics or anticoagulants before reaching primary EP; life expectancy < 1 y ear; planned surgery <3 mo. preventing maintenance of DAPT; known pregnancy; known intolerance to DES, anticoagulants or antiplatelet drugs, preventing DAPT

2,488 patients were 1:1 randomized

Zotarolimus-eluting
RESOLUTE ONYX
(N = 1243)

ORSIRO

(N = 1245)

Sirolimus-eluting

1-year clinical outcomes

- Primary endpoint: Target Vessel Failure (CD, TV-MI, or ID-TVR)
- Secondary endpoints: individual component of the primary outcomes, all death, all MI, any revascularization, major bleeding, stent thrombosis
- Additional composite endpoints: TLF (CD, TV-MI, or ID-TLR), MACE (all death, all MI, emergent CABG, ID-TLR)
 POCE (all death, all MI, any revascularization)

*** Equally funded by Medtronic and Biotronik ***

Baseline Characteristics

	All patients n = 2,488	Resolute Onyx n = 1,243	Orsiro n = 1,245
Age (yrs.)	64.0 ± 11.0	64.1 ± 10.9	63.9 ± 11.2
Women	23.9 %	23.9 %	23.9 %
BMI (kg/m²)	27.9 ± 4.4	27.9 ± 4.4	28.0 ± 4.4
Current smoker	30.6 %	30.6 %	30.7 %
Family history of coronary artery disease	43.5 %	44.7 %	42.2 %
Diabetes, medically treated	20.5 %	20.9 %	20.1 %
Hypertension	51.5 %	49.8 %	53.2 %
Hypercholesterolemia	45.9 %	45.4 %	46.4 %
Previous myocardial infarction	16.1 %	15.6 %	16.5 %
Previous percutaneous revascularization	21.7 %	21.1 %	22.3 %
Previous coronary bypass surgery	7.1 %	6.4 %	7.8 %
Acute coronary syndrome 🜟	70.9 %	70.8 %	71.1 %
Acute myocardial infarction 🛨	51.2 %	50.4 %	52.1 %
STEMI 🛨	25.0 %	22.7 %	27.2 %
NSTEMI	26.3 %	27.7 %	24.9 %
Unstable angina	19.7 %	20.4 %	19.0 %
Stable angina or silent ischemia	29.1 %	29.2 %	28.9 %

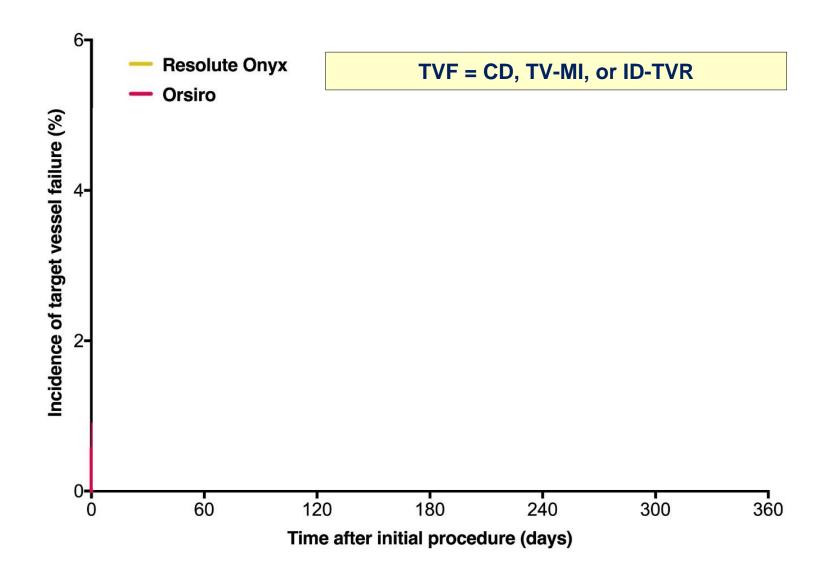
Lesion Characteristics

	All lesions n = 3,239	Resolute Onyx n = 1,646	Orsiro n = 1,593
Target lesion coronary artery			
Left main	1.5 %	1.5 %	1.4 %
Left anterior descending	41.4 %	41.2 %	41.6 %
Left circumflex	23.8 %	24.3 %	23.4 %
Right coronary artery	33.1 %	32.9 %	33.3 %
Bypass graft	1.4 %	1.2 %	1.6 %
ACC/AHA lesion class	3,235	1,644	1,591
A/B1	30.3 %	30.4 %	30.2 %
B2/C ★	69.7 %	69.6 %	69.8 %
Bifurcation *	31.9 %	31.3 %	32.5 %
Severe calcification	15.5 %	15.0 %	16.0 %
In-stent restenosis	2.3 %	2.9 %	1.8 %
Chronic total occlusion	3.5 %	3.1 %	4.0 %
Number of stents per lesion	1.26 ± 0.56	1.27 ± 0.55	1.26 ± 0.57
Implantation of assigned stents only	98.3 %	98.6 %	98.0 %

Procedural Data (1)

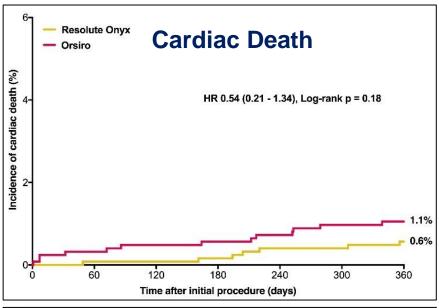
	All lesions n = 3,239	Resolute Onyx n = 1,646	Orsiro n = 1,593
Total number of lesions treated per patient			
1 lesion	75.2 %	73.5 %	76.9 %
2 lesions	20.1 %	21.2 %	19.1 %
3 or more lesions	4.7 %	5.4 %	4.0 %
Multivessel treatment	17.7 %	19.0 %	16.5 %
At least one chronic total occlusion	4.5 %	4.0 %	5.0 %
At least one bifurcation lesion	39.4 %	39.0 %	39.8 %
At least one in-stent restenosis	2.9 %	3.5 %	2.2 %
At least one small-vessel (RVD < 2.75 mm)	52.3 %	54.3 %	50.3 %
At least one long lesion (> 27 mm)	21.0 %	19.7 %	22.3 %
Total stent length (mm) per patient	30 (18-48)	30 (18-49)	30 (18-48)
Radial approach	73.1 %	73.5 %	72.6 %
Total number of lesions treated per patient			
1 lesion	75.2 %	73.5 %	76.9 %
2 lesions	20.1 %	21.2 %	19.1 %

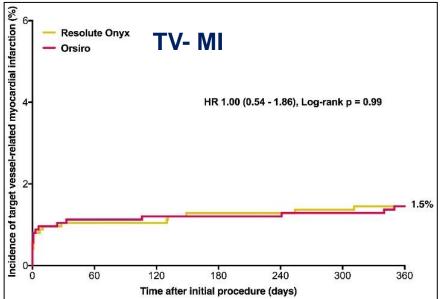
Procedural Data (2)

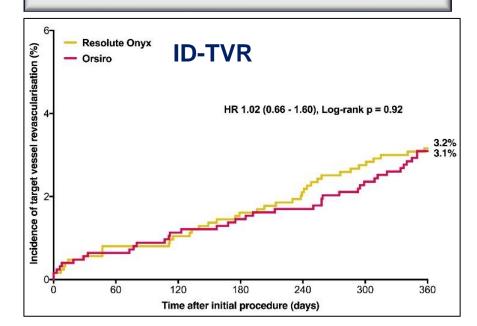


	All lesions n = 3,239	Resolute Onyx n = 1,646	Orsiro n = 1,593
Preprocedural			
Lesion length (mm)	15.4 (11.3-23.2)	15.3 (10.9-22.9)	15.6 (11.2-23.7)
Minimum lumen diameter (mm)	0.75 (0.46-1.05)	0.75 (0.48-1.04)	0.74 (0.43-1.06)
Reference vessel diameter (mm)	2.81 (0.56)	2.79 (0.57)	2.83 (0.56)
Stenosis (lumen diameter, %)	72.3 (61.5-83.0)	72.0 (61.2-82.1)	72.7 (61.8-84.4)
Procedural			
Implantation of study stents only	98.3 %	98.6 %	98.0 %
Number of stents implanted per lesion	1.26 (0.56)	1.27 (0.55)	1.26 (0.57)
Postdilatation	64.0 %	63.5 %	64.5 %
Postprocedural			
Minimum lumen diameter (mm)	2.41 (0.53)	2.41 (0.54)	2.41 (0.52)
Stenosis (lumen diameter, %)	12.7 (8.2-18.3)	12.4 (8.1-17.8)	13.0 (8.5-18.9)
Acute gain in segment (mm)	1.67 (0.63)	1.65 (0.62)	1.68 (0.64)
Device success	98.1 %	98.4 %	97.8 %
Lesion success	99.7 %	99.7 %	99.6 %

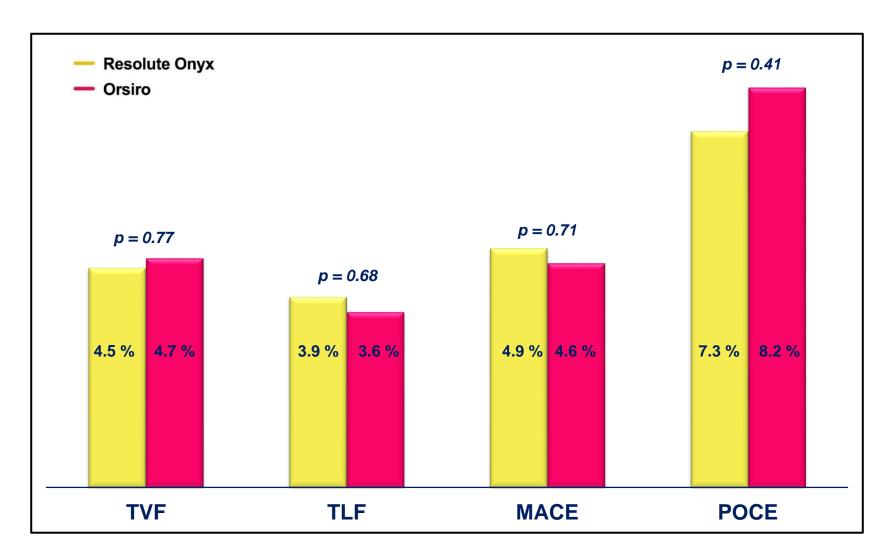
Primary Endpoint (TVF)



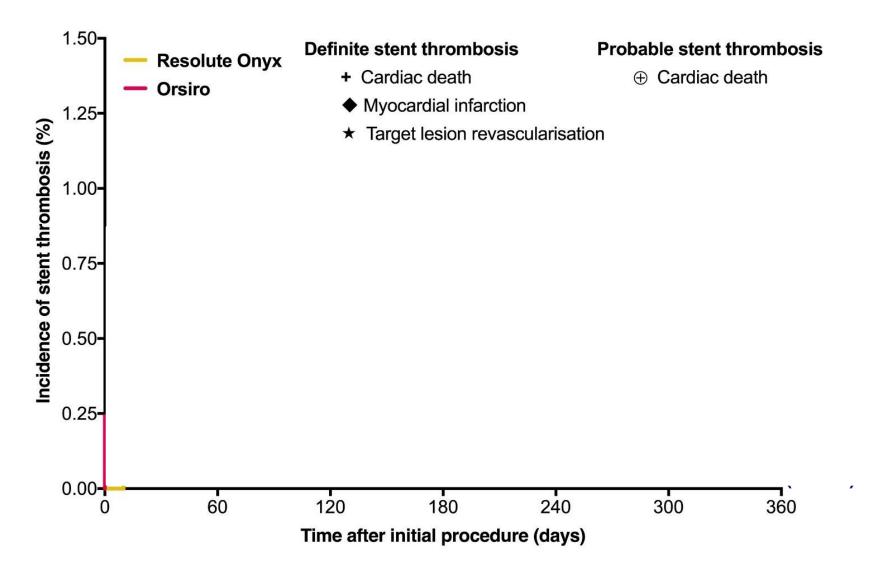



Components of TVF

At 1-year follow-up, there was no statistically significant difference between stent groups in the components of TVF.

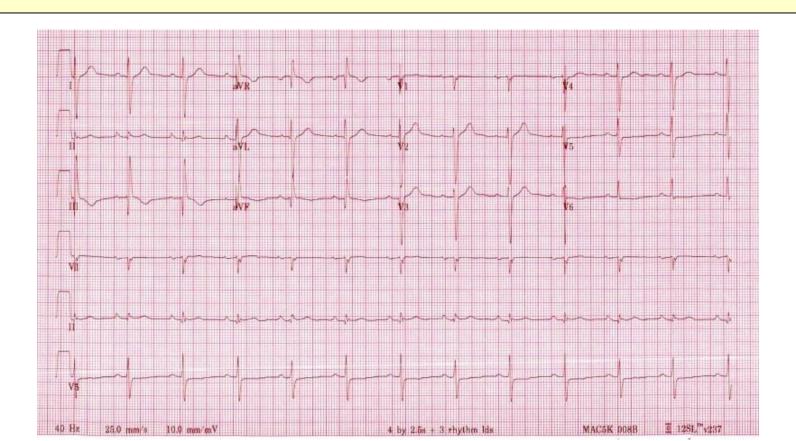


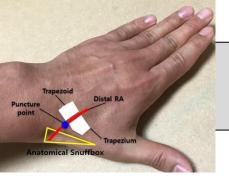
Composite Clinical Endpoints



Definite or Probable Stent Thrombosis

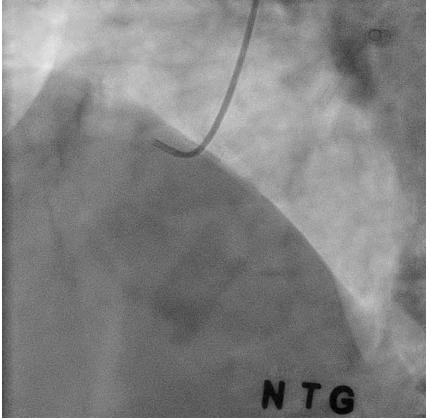
What we learned from BIONIX trial


- Regarding BIONIX trial, it can reflects well the wide spectrum of patients treated in routine daily practice as study population included 30% bifurcation lesion, 18% MVD, 70% ACS including 25% STEMI, 26% NSTEMI.
- The Resolute Onyx demonstrated safety and efficacy at 1-year follow-up in allcomers.
- The rate of stent thrombosis was very low (0.1%) in the Resolute Onyx group.

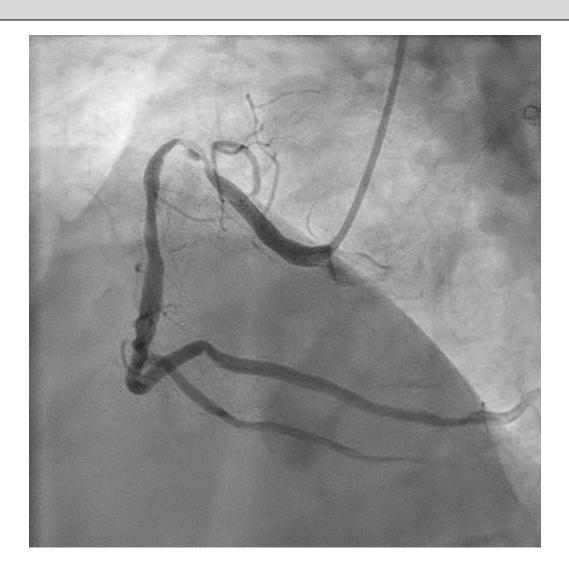


Ahn OO (85/M)

- Resting chest pain 6-hour ago
- Known Diabetes, NTN
- s/p PCI for p-to-mLAD d/t NSTEMI 8-month ago
- Interruption of medication including for 3-day DAPT d/t the loss of his wife
- Initial Tnl: 15.1 ng/dL


Urgent CAG Lt.snuffbox approach

(2018.03.17) 2.75x28mm & 2.5x33mm DES implantation in p-to-mLAD



Severe stenosis in ectatic pRCA, suspicious ruptured plaque, with TIMI 2 flow

stent optimization in the setting of AMI

The factor of stent optimization (1) Intravascular image guidance)

2014 ESC/EACTS Guidelines

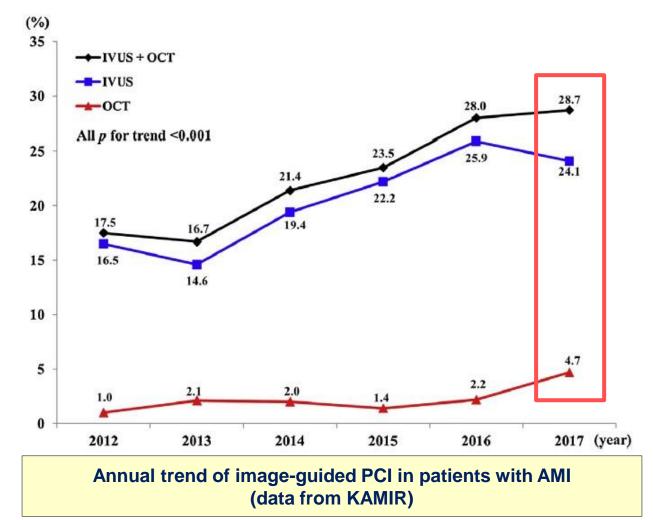
Recommendations	Class ^a	Level ^b	Ref. ^c
FFR to identify haemodynamically relevant coronary lesion(s) in stable patients when evidence of ischaemia is not available.	_	A	50,51,713
FFR-guided PCI in patients with multivessel disease.	lla	В	54
IVUS in selected patients to optimize stent implantation.	lla	В	702,703,706
IVUS to assess severity and optimize treatment of unprotected left main lesions.	lla	В	705
IVUS or OCT to assess mechanisms of stent failure.	lla	С	
OCT in selected patients to optimize stent implantation.	IIb	С	

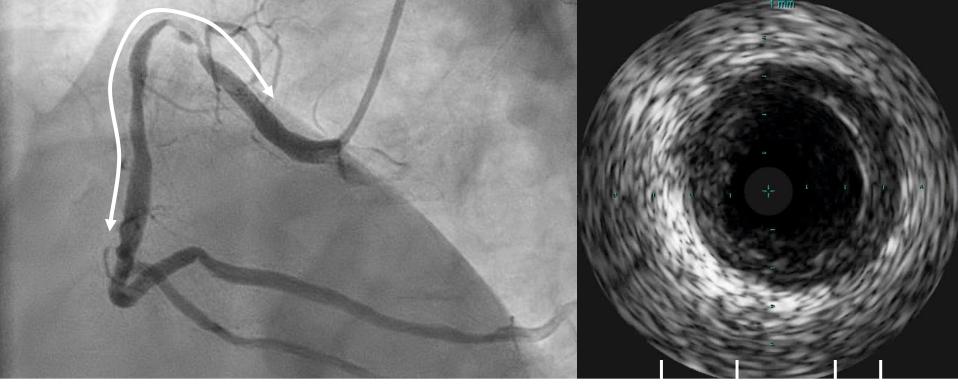
2018 ESC/EACTS Guidelines

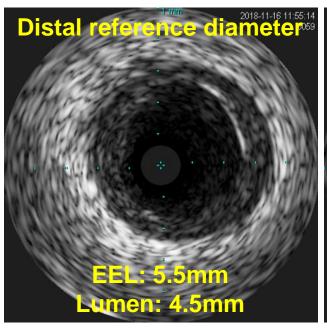
UPGRADES

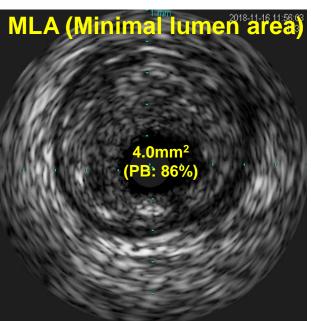
For PCI of bifurcation lesions, stent implantation in

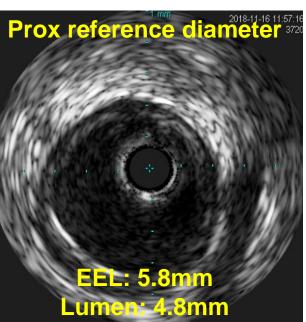
the main vessel only, followed by prov angioplasty with or without stenting of						
Immediate coronary angiography and revascularization, if appropriate, in survivors of out-of-hospital cardiac arrest and an ECG consistent with STEMI						
Assess all patients for the ri contrast-induced nephropa						
OCT for stent optimization	n					
Recommendations	Classa	Level ^b				
	Ciass	Level				
IVUS or OCT should be considered in selected patients to optimize stent implantation. 603,612,651-653	Ha	В				


Intravascular imaging for procedural optimization should be considered


Review


The role of optical coherence tomography in the setting of acute myocardial infarction


Yongcheol Kim (MD)^a, Thomas W. Johnson (MD)^b, Takashi Akasaka (MD)^c, Myung Ho Jeong (MD)^{a,*}



The factor of stent optimization (2) appropriate DES selection)

2018 ESC/EACTS Guidelines on myocardial revascularization

2.1 What is new in the 2018 Guidelines?

Calculation of the Syntax Score, if left main or multivessel revascularization is considered

Radial access as standard approach for coronary angiography and PCI

DES for any PCI

Systematic re-evaluation of patients after myocardial revascularization

Stabilised NSTE-ACS patients: revascularization strategy according to principles for SCAD

Use of the radial artery grafts over saphenous vein grafts in patients with high-degree stenosis

Myocardial revascularization in patients with CAD, heart failure, and LVEF ≤35%

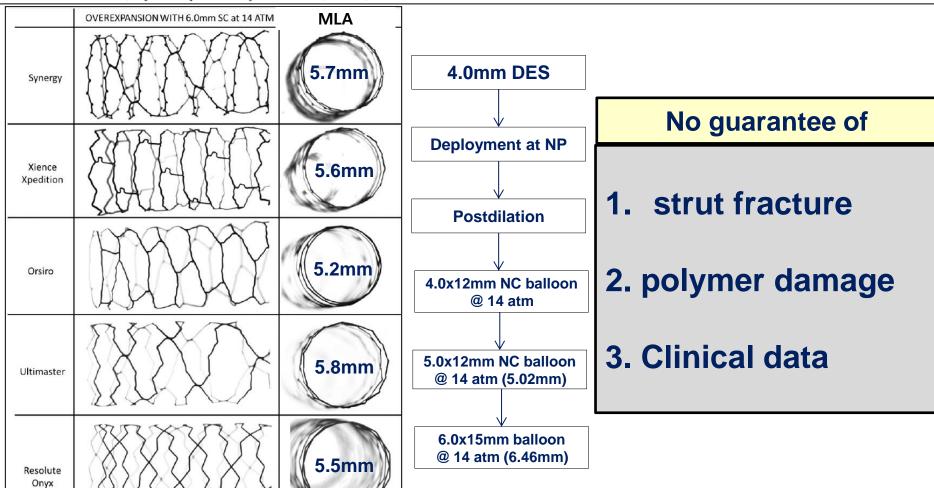
CABG preferred

PCI as alternative to CABG

Recommendations on choice of stent and access site

Recommendations	Classa	Level ^b
DES are recommended over BMS for any PCI irrespective of: clinical presentation lesion type planned non-cardiac surgery anticipated duration of DAPT concomitant anticoagulant therapy. 100,578,579,640	ı	A
Radial access is recommended as the stand- ard approach, unless there are overriding procedural considerations. 172,638,641	1	A
BRS are currently not recommended for clinical use outside of clinical studies. 642–650	Ш	С

BMS = bare-metal stents; BRS = bioresorbable scaffolds; DAPT = dual antiplatelet therapy; DES = drug-eluting stents; PCI = percutaneous coronary intervention. $^{a}Class$ of recommendation.


bLevel of evidence.

Over-expansion capacity and stent design model: An update with contemporary DES platforms

Jaryl Ng ^{a,1}, Nicolas Foin ^{a,*,1}, Hui Ying Ang ^a, Jiang Ming Fam ^a, Sayan Sen ^b, Sukhjinder Nijjer ^b, Ricardo Petraco ^b, Carlo Di Mario ^c, Justin Davies ^b, Philip Wong ^a

- ^a National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- ^b International Centre for Circulatory Health, NHLI, Imperial College London, UK
- ^c Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, UK

Dedicated stent for dilated coronary artery

RESOLUTE ONYX™

Drug-Eluting Stent

BROADEST DES SIZE MATRIX EVER

No Patient Anatomy Is the Same

BROADEST SIZE MATRIX

Stent length (mm)

2.25	8	12	15	18	22	26	30	34	38	3.25
2.50	8	12	15	18	22	26	30	34	38	3.25
2.75	8	12	15	18	22	26	30	34	38	3.75
3.00	8	12	15	18	22	26	30	34	38	3.75
3.50	8	12	15	18	22	26	30	34	38	4.75
4.00	8	12	15	18	22	26	30	34	38	4.75
4.50	-	12	15	18	22	26	30	-	-	5.75
5.00		12	15	18	22	26	30	- 55	6.0	5.75

New sizes

Stent diameter (mm)

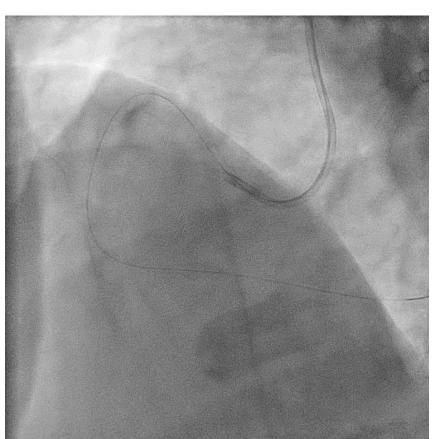
Maximum overexpansion (mm)

All sizes

5 F

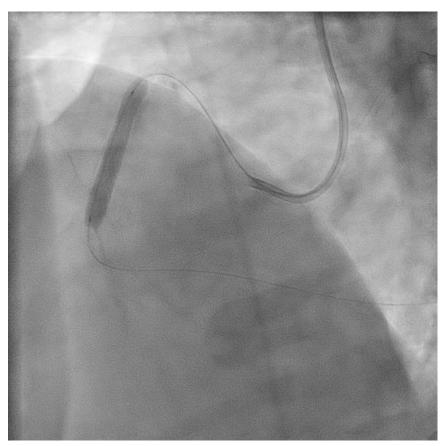
compatibile

2.25-5.00 mm

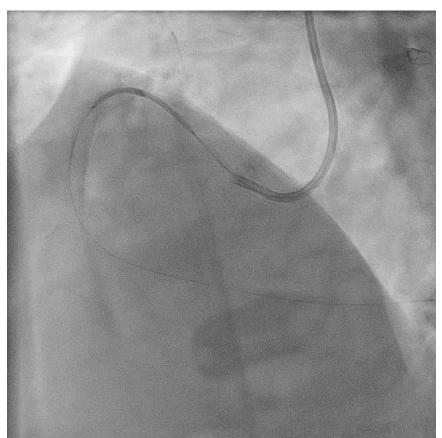


IVUS-guided stent optimization for dilated coronary artery with Resolute OnyxTM

Predilation with 3.0x15mm compliance balloon

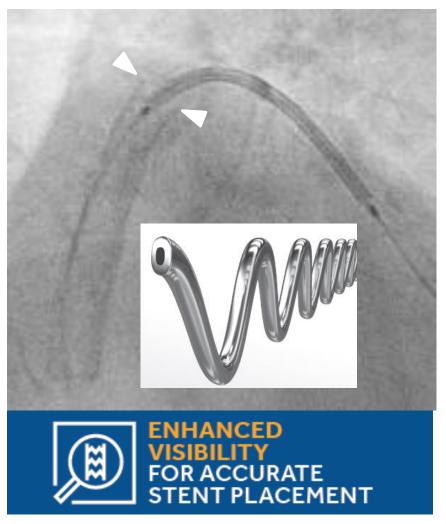


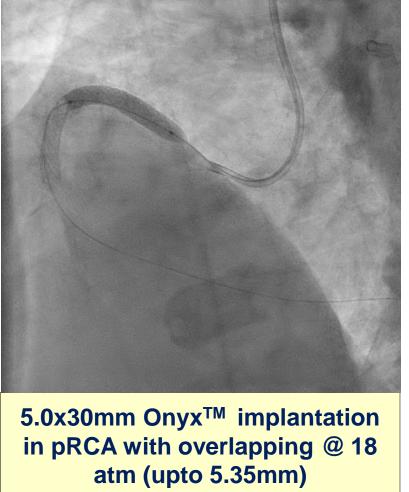
FU CAG after predilation



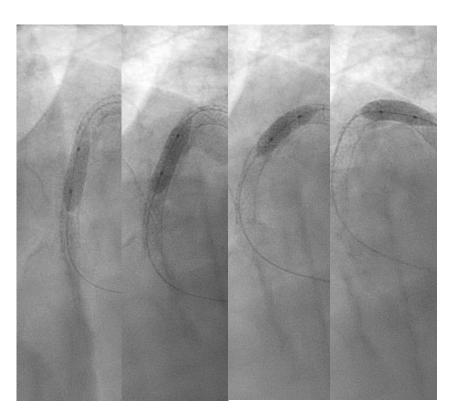
IVUS-guided stent optimization for dilated coronary artery with Resolute OnyxTM

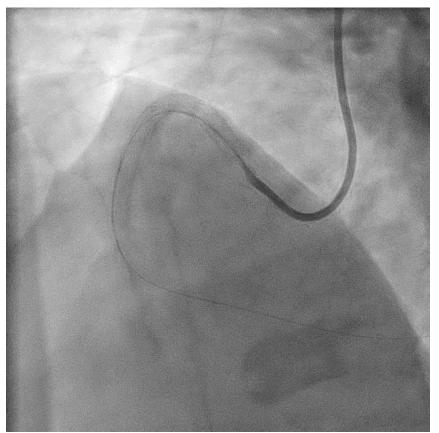
4.5x30mm Onyx[™] implantation in mRCA @ 16atm (upto 4.7mm)



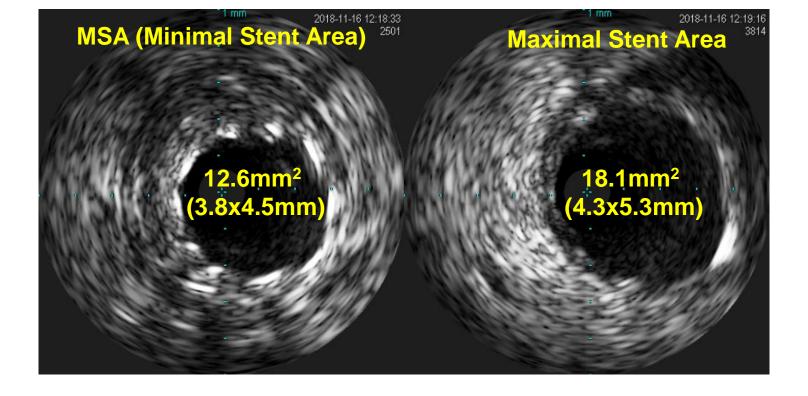

Positioning of 5.0x30mm Onyx[™] for implantation with overlapping

CORE WIRE TECHNIQUE of Resolute Onyx™





IVUS-guided stent optimization for dilated coronary artery with Resolute OnyxTM



Postdilation with 4.5x12mm NC balloon @ upto 22atm

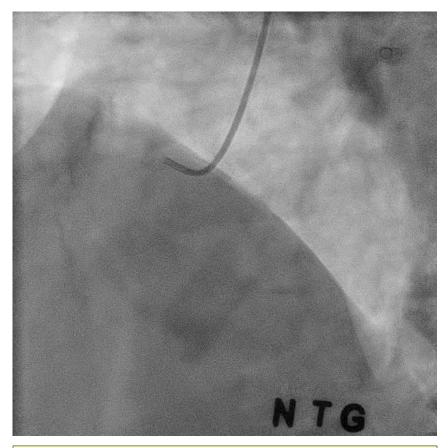
FU CAG after postdilation

Box 4 Criteria to assess optimal stent result

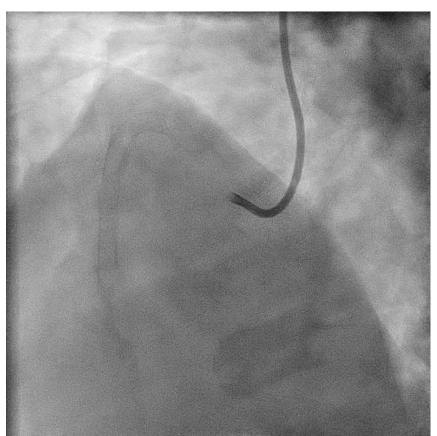
• A relative stent expansion of >80% (MSA divided by average reference lumen area) should be obtain An MSA of >5.5 mm² by IVUS and > 4.5 mm² by OCT should be achieved in non-left main lesions.

 The clinical relevance of acute malapposition is uncertain. Nonetheless, extensive malapposition after stent implantation should be avoided and corrected, if anatomically feasible. Early strut coverage may be promoted by full apposition.

Acute malapposition of <0.4 mm with longitudinal extension <1 mm or malapposition should not be corrected as spontaneous neointimal integration is anticipated. This cut-off requires prospective validation. 2 No Severe malapposition


- Late acquired malapposition represents an established cause of late an
- Tissue prolapse in ACS as compared with stable CAD is adversely related to outcomes, likely because of differences in the composition of the protruding tissue.
- Large dissections detected by IVUS or OCT are independent predictors of MACE. Presence of residual plaque burden, extensive lateral (>60°), and longitudinal extension (>2 mm), involvement of deeper layers (medial or adventitia) and localization distal to the stent increase
- the risk for adverse events. Stent edge haematoma ma
- 3 No Stent edge dissection

of a residual stent edge stenosis.



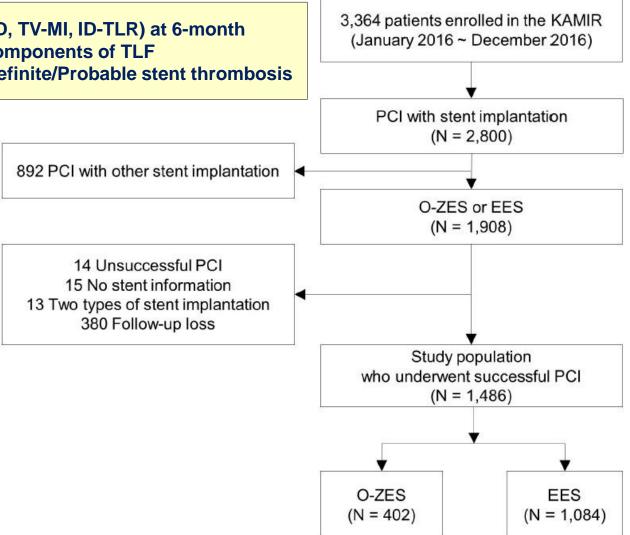
Successful IVUS-guided Resolute Onyx[™] implantation in the stenotic lesion of dilated coronary artery

Initial CAG

Final CAG after 4.5x30mm & 5.0x30mm Onyx[™] implantation

This is a provisional PDF only. Copyedited and fully formatted version will be made available soon.

Comparison of short-term clinical outcomes between Resolute Onyx zotarolimus-eluting stents and everolimus-eluting stent in patients with acute myocardial infarction: Results from the Korea Acute Myocardial infarction Registry (KAMIR)


Authors: Yongcheol Kim, Sung Sik Oh, Myung Ho Jeong, Youngkeun Ahn, Ju han Kim, Young Joon Hong, Doo Sun Sim, Min Chul Kim, Hyo-Soo Kim, Kyeong Ho Yun, Seok Kyu Oh, Chong Jin Kim, Myeong Chan Cho

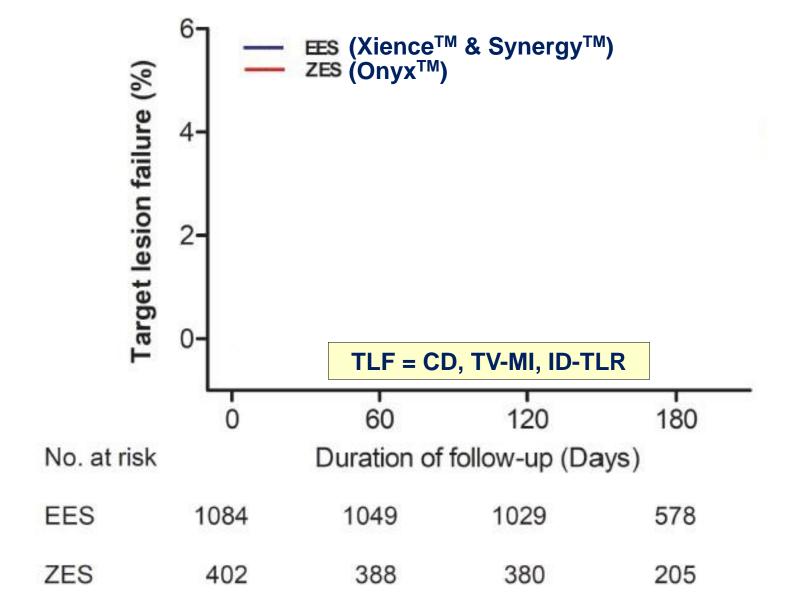
Study Flowchart

- Primary outcomes: TLF (CD, TV-MI, ID-TLR) at 6-month
- Secondary outcomes: 1) components of TLF
 - 2) Definite/Probable stent thrombosis

Baseline Characteristics

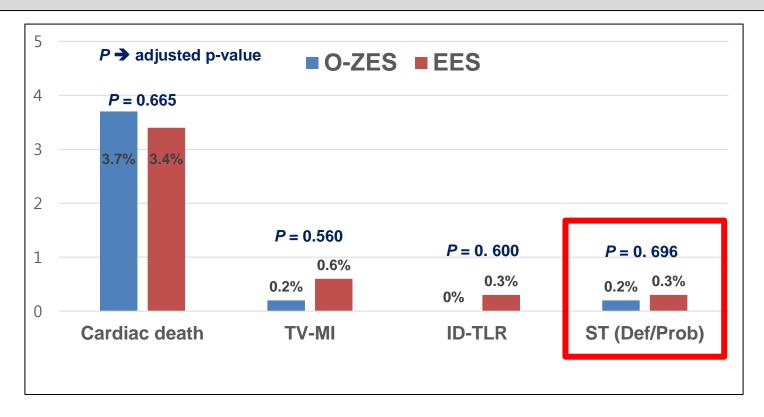
	Onyx [™] (n=402)	Xience™ & Synergy™ (n=1,084)	<i>p</i> -value
Demographic			
Age [kg/m²]	64.0 ±12.4	64.2 ± 12.2	0.802
Male sex	305 (75.9%)	816 (75.3%)	0.813
CV risk factors			
HTN	206 (51.2%)	541 (49.9%)	0.647
Diabetes	122 (30.3%)	294 (27.1%)	0.218
Dyslipidemia	52 (12.9%)	128 (11.8%)	0.554
Current smoking	158 (39.3%)	446 (41.1%)	0.521
F/Hx of IHD	35 (8.7%)	106 (9.8%)	0.531
Medical history			
Angina	36 (9.0%)	70 (6.5%)	0.097
MI	30 (7.5%)	45 (4.2%)	0.010
HF	5 (1.2%)	11 (1.0%)	0.704
CVA	24 (9.0%)	73 (6.7%)	0.596
STEMI★	207 (51.5%)	566 (52.2%)	0.805
Killip III/IV	58 (14.5%)	151 (14.5%)	0.997
LVEF, %	52.3	52.8	0.388

Angiographic and procedural Characteristics



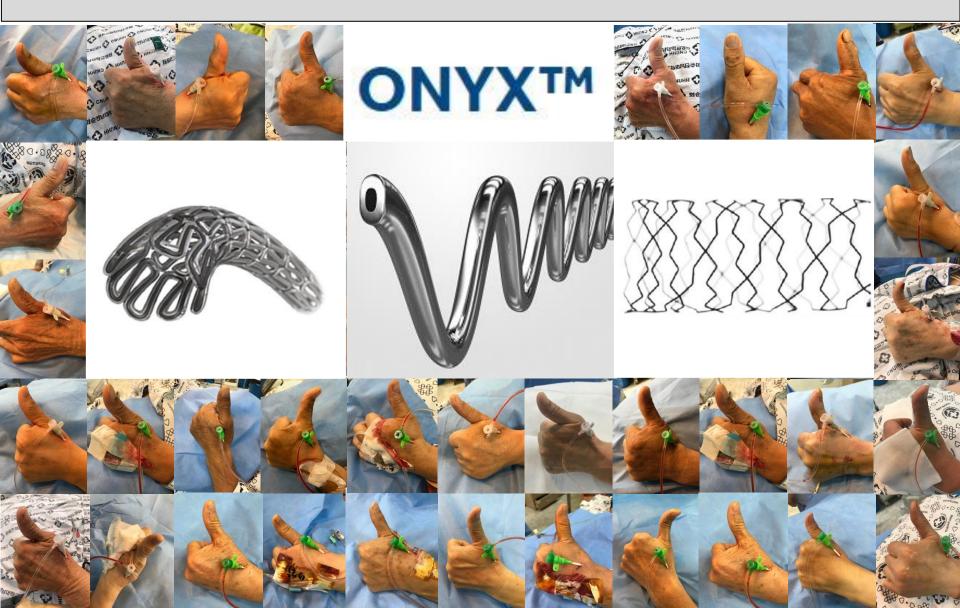
	Onyx [™] (n=402)	Xience™ & Synergy™ (n=1,084)	<i>p</i> -value
Transradial approach	189 (47.0%)	498 (46.3%)	0.802
Image-guided PCI	123 (30.6%)	359 (33.1%)	0.305
Culprit vessel			0.532
LAD	186 (46.3%)	528 (48.8%)	
LCx	65 (16.2%)	180 (16.6%)	
RCA	140 (34.8%)	337 (31.1%)	
Left main	11 (2.7%)	38 (3.5%)	
Left main or MVD 🜟	228 (56.7%)	530 (49.0%)	0.008
B2/C lesion 🛨	354 (90.1%)	952 (89.3%)	0.670
Implanted stent			
Stent number	1.25 ± 0.46	1.20 ± 0.45	0.077
Stent diameter	3.12 ± 0.46	3.15 ± 0.43	0.222
Stent length	31.0 ± 14.8	30.4 ± 15.2	0.498

Target Lesion Failure (TLF) at 6-month



Composite clinical outcomes 6-month

implantation of Resolute Onyx[™] or EES including Xience and Synergy provided similar clinical outcomes in patients with AMI undergoing successful PCI.



Take Home Message

- When you performed PCI with Onyx[™], you don't have to worry about stent thrombosis in 99.8~99.9% of the patients including AMI.
- For stent optimization for the dilated coronary artery, dedicated large size Onyx[™] is good option, especially with intravascular imageguidance.
- Don't try to change the name, Onyx!

Thank you for your attention

